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Abstract. In this paper we extend the Feynman-Kac formula to the case of imaginary 
time Schrodinger equations (heat equations) for multicomponent wavefunctions. The 
approach covers in particular the usual Pauli equation for a spin-$ particle in an arbitrary 
magnetic field. Our formula contains, besides the expectation with respect to a Wiener 
process in ordinary space, an expectation with respect to a jump process over the discrete 
indices describing the internal degrees of freedom. To illustrate the method we evaluate 
the formula in some special cases and we derive also various inequalities. A detailed 
comparison is made with a recent work by Gaveau and Vauthier. 

1. Motivations 

In a previous paper (De Angelis and Jona-Lasinio 1982) we succeeded in giving a 
stochastic description of a spin-: particle in a magnetic field, generalising to this case 
Nelson stochastic mechanics. This description involves, besides the usual diffusion 
processes, also generalised Poisson processes over a discrete state space connected 
with the possible values of a spin component of the particle. 

This result naturallly raises the question of whether it is possible to give probabilistic 
expressions for the solutions of the Pauli equation in terms of appropriate averages 
over Wiener and Poisson processes. What we have in mind are extensions of the well 
known Feynman-Kac-It6 (Simon 1979) formula valid for spinless particles in a 
magnetic field. 

In this paper we implement this program for a class of equations that we call ‘Pauli 
type’ which includes equations for particles of arbitrary spin or systems of many 
particles with a given spin. 

The main feature of our way of representing solutions consists in treating both 
continuous variables, like space coordinates, and discrete indices associated with the 
components of the wavefunction on the same ground. 

In other words the wavefunction is considered as a ‘scalar’ valued function of 
continuous and discrete variables. This has to be contrasted with the probabilistic 
representation of the Pauli wavefunctions obtained recently by Gaveau and Vauthier 
(1981) in terms of averages over the Wiener process alone. In their representation 
the spin part is not associated with a stochastic process and the solution is expressed 
in terms of an expectation which contains a matrix valued functional of the Wiener 
process. 
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Of course our representation is not manifestly rotationally invariant as is the one 
by Gaveau and Vauthier, but it offers from the analytical point of view the greater 
advantage of working with purely numerical valued quantities. In conclusion we have 
a complete 'scalarisation' of the problem. 

Our technique applies also in a local coordinate system, to heat equations on a 
space of forms (Malliavin 1978). These arise also in physics in the study of certain 
supersymmetric models (Witten 1982). 

From the point of view of the probabilistic structure and, in particular, for what 
concerns the Poisson part, our representations are directly inspired by the analogue 
of Girsanov's formula obtained by Kabanov et a1 (1978) for the Radon-Nikodym 
derivative connecting two Poisson processes. 

We now give an outline of the paper. In 9: 2 we provide a derivation of our basic 
formula in the simple case of the Pauli equation in a constant magnetic field. The 
formula is then extended to arbitrary magnetic field (equation (3.2)) in § 3 where a 
comparison with Gaveau and Vauthier is also given. In view of the central role of 
(3.2) an independent discussion is supplied in appendix 2. 

Explicit evaluations in simple cases are discussed in 5 4. In 9: 5 various inequalities 
are derived including one already obtained by Gaveau and Vauthier. In § 6 general 
Pauli type equations are introduced and the generalisation of our formula to this case 
is given. Appendix 1 discusses a representation of the solutions of an arbitrary linear 
ordinary differential equation in p-dimensional space in terms of jump processes over 
the indices identifying the components of the solutions in a given basis. This rep- 
resentation, which is used in the text to compare our formula with that of Gaveau 
and Vauthier, has in our opinion an independent interest. 

2. The Pauli equation in homogeneous magnetic field 

In order to illustrate the type of representations that one can expect for the solution 
of the Pauli equation, it is very instructive to start from the simple case of a 
homogeneous magnetic field. In this case spin and space coordinates separate and 
for the spin part of the wavefunction we obtain (for imaginary time) the equation 

d 
dt - ~ i ( a )  = t ( ~  * axr)(V) 

= ~H,UX~((T)+~(H, -iaH,)Xt(-a) (2.1) 

where cr = *1 and the usual representation of the Pauli matrices has been used. 
As we have discussed in De Angelis and Jona-Lasinio (1982) this evolution 

equation becomes, via the canonical trsnsformation ,y + K ' x  =f where is the 
ground state wavefunction, the Kolmogorov type equation (after subtracting the 
ground state energy) 
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where c(t) is the jump process on {-1, 1) satisfying the initial condition a(0) =U, 
whose transition probability per unit time is p ( a ) ;  fo  is the initial condition. It is now 
convenient to express a(t)  in terms-of an auxiliary point process ISt which counts the 
jumps of a(t);  clearly a(t) = c ~ ( - l ) ~ ~  with No = 0. 

The process Nf  is not pure Poisson because the transition probability per unit time 
depends on the parity of N. The next step consists then in expressing in terms of a 
pure Poisson process Nr of unit parameter i.e. E(dNr) = dt. By using the expression 
for the Radon-Nikodym derivative of Nr with respect to NI as given in Kabanov et a1 
(1978), we obtain the following formula for the solution of (2.3): 

where the stochastic integral sdNr with respect to the Poisson process is simply the 
Stieltjes integral over each trajectory. Performing now, in the backward direction, the 
canonical transformation, we obtain the solution of (2.1) which can be written as 

The structure of (2.5) is very similar to the structure of (2.4), and actually it could 
have been guessed by generalising formally the basic expression of the Radon- 
Nikodym derivative to 'complex Kolmogorov equations' like (2. l), i.e. to arbitrary 
linear systems of two differential equations with constant coefficients. The main point 
consists in interpreting the off-diagonal part of the coefficient matrix as 'complex' 
transition probabilities per unit time. The basic strategy of the next subsection will 
consist in combining, in an appropriate way, (2.5) with the usual Feynman-Kac-It6 
formula in order to obtain the solution of the Pauli equation in the general case of 
an inhomogeneous magnetic field. 

3. The Pauli equation in an inhomogeneous magnetic field 

We want to solve the equation ( h  = m = c = 1) 

a+r/at = -t(-iV -A)*+r - V(x)+r + ~ H ( x )  U+p (3.1) 

We show that the initial value problem for (3.1) is solved by the following formula, 
if we choose the usual representation for the Pauli matrices: 

(3.2) 

where W,(t) is the Wiener process starting from x at t = 0. 
First of all we notice that (3.2) defines a semigroup, as can be verified using the 

Markov property of the processes involved and their translation invariance in time. 
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To check that (3.2) solves (3.1) it is then enough to calculate the derivative at 
t = 0. For this we need the extension of It8 calculus to Poisson processes. This exists 
and the reader may consult Gihman and Skorohod (1972). From this we have (see 
for example equation (13), p 270 of Gihman and Skorohod (1972)): 

d[f(W, (-)Na)eEl 

= e' df +f d(e') + e %  * Vf dt + e' (aJ)(A - 1) d N  

= e'[iAf dt + Vf - d W + ( a d )  dN]  + f eE[b * d W 

- V d t + & , c ~ ( - ) ~ d t + ( A  - l )dN]+e ' [b  *Vfdt+(~3, f ) (A-- l )dN]  
(3.3) 

where in our case b = -iA, A = i (HX - ia(-)NrHy), (&f)(a) =f ( -a)  -f(a). 
By taking the expectation at t = 0 we verify that (3.1) is satisfied. 
We now compare our solution with that of Gaveau and Vauthier (1981). It is not 

difficult to see that (3.2) can be rewritten, by changing the time variable T + t - 7 in 
the terms containing integrals with respect to the Poisson processes: 

It is important to remark that in the Poisson stochastic integral this change of time 
variable requires the substitution 

N, - NT + 1 
( - I N T  + (-1 

due to the circumstance that trajectories continuous on the left become continuous 
on the right. 

Using now the results of appendix 1, we recognise that the matrix 

for every trajectory of the Wiener process is precisely the matrix given by (9) of lemma 
1 of Gaveau and Vauthier (1981). 

In conclusion we refer the reader to appendix 2 for a formal derivation of (3.2). 

4. Special cases 

We now give an example in which the expression (3.2) can be simplified by performing 
explicitly at least part of Poisson stochastic integration. Suppose that the argument 
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=exp(l ,rIn[i(HZ +H~)1'2]dN,+-Arg(Hx-iHy)[1-(-)N']). 1u (4.1) 
2 

If, in  addition, H :  + H :  does not depend on space coordinates, the Poisson integral 
can be performed completely and one obtains: 

exp ( J,' InUWx (wr (7)) - i c+ ( - - ) " ,~ ,  (wr (mi mT) 

(4.2) = exp ( Nr ln[:(HP + H ,  2 ) 1/2  ] +: 1u Arg(Hx -iH,)[l -(-)"$I). 
2 

Therefore in this case and for neutral particles, (3.2) takes a form very close to the 
usual Feynman-Kac formula as all stochastic integrations have disappeared: 

(4.3) 

Let us mention also the following special case which will be used in the next section. 
When there is no magnetic field in the z and y directions and when the initial 
condition does not depend on u, one can explicitly perform the Poisson average with 
the aid of the formula 

5. Some inequalities 

A general inequality which follows immediately from (3.2) is 

The right-hand side of this inequality can be interpreted as the evolution of a neutral 

and with the initial condition 96(x, u) = / 9 0 ( x ,  u)l. Equation (5.1) can be rewritten 
slightly differently as 

particle in a magnetic field which has only two components H' = ((HZ + H ,  2 ) 1 /2  , 0, H,) 

I C ~ X P ( - ~ ~ ) ~ ~ I ( X ,  dl [ex~(-tW)l4~ll(x,  U )  ( 5 . 2 )  
where X and X are the corresponding Hamiltonian operators which implies, for 
instance, the inequality E,, 2 Eb for the corresponding ground state energies. This 
inequality is a generalisation of the well known diamagnetic inequality (Simon 1979). 
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(5.3) 

in which only the Wiener process appears and which can be used as the starting point 
for pointwise estimates in the spirit of Carmona (1978) or qualitative analysis of bound 
states. 

More detailed estimates can be obtained if we assume for example, following 
Gaveau and Vauthier, that the magnetic field has axial symmetry. We now derive in 
a very simple way from our representation of the solution an improved version of the 
Gaveau and Vauthier inequality. 

By using a vector potential of the form 

A =(-Yf+xg,xf+yg, h )  (5.4) 

where f, g and h are functions of p = (x2  + y2)"2 and z ,  the corresponding magnetic 
field is 

= ( - 4 2  - Y k z  -h,/Pl, -yfz +.xgz - h p / P I ,  2f+PfP), f z  = a f / a z .  . . . ( 5 . 5 )  

This represents the most general axially symmetric field. The whole discussion 
which follows can be carried through for such fields; however, for simplicity we give 
the formula in the special case considered by Gaveau and Vauthier which corresponds 
t o g  = h  =o. 

We consider a spinor of the form 

$ , (p ,  8, z ,  e )  = exp[fi(2n + 1 - ~ ) e ] ~ , ( p ,  z ,  e )  (5.6) 
which is the most general eigenvector of the z component of the total angular 
momentum. Next we decompose the three-dimensional Wiener process into its 
components in cylindrical coordinates W, = ( p r ,  8 ,  z , ) .  In particular Or can be written as 

' db, e, = eo+I,  ps (5.7) 

where 6, is an auxiliary one-dimensional Brownian motion independent of p, and z,. 
p, is the usual Bessel process on the half line. We now insert (5.6) and (5.7) in (3.2) 
and calculate explicitly the expectation over the angular part. We obtain 
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In arriving at (5 .8 )  the following formula (of integration by parts) has been useful: 

where dXs in our case is a stochastic integral with respect to a Wiener process. 
To establish (5.9) consider a trajectory of the Poisson process satisfying NI = n and 

having jumps at the times 0 < t l  < t 2 .  . . < tn s t. The left-hand side of (5.9) can be 
writ ten 

From (5.8) we have then the obvious estimate 

I&Or P,  892, a)l 

(5.10) 

(5.11) 

This coincides with the inequality derived in Gaveau and Vauthier (1981). 

6. General Pauli type equations 

where x E R d ,  the index a takes p values, a = 1, . . . , p ,  and 0 means addition modulo 
p .  This way of writing (6.1) does not imply any restriction on the matrix acting on 
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the discrete indices of 
with parameter 1, we define 

G F D e  Angelis, G Jona-Lasinio and M Sirugue 

If N : ,  , , . , N7-I are p - 1 independent Poisson processes 

and using the same technique of 3 3 one can verify that the expression 

~r(x,a)=, lp- l" iE[~o(W,(r) ,   ON,) 

(6.3) 

is the solution of (6.1) satisfying the initial condition $ t = o ( x ,  a )  = a ) .  
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Appendix 1. Probabilistic expression for the solution of a linear system of ordinary 
differential equations 

The purpose of this appendix is to give a probabilistic expression for the solution 
of a system of ordinary linear differential equations 

(Al .  1) 

subjected to the initial condition 

$U ( t  = 0) = $U. (A1.2) 

As indicated before, it is convenient to consider G u ( t )  as a function of both the 
time t and the discrete variable a, a = 1, . . . , p .  Since we are mainly interested in the 
Pauli equation (i.e. p = 2) we shall concentrate on this case and give later the formulae 
corresponding to the general case. In this case we introduce the spin variable (+ = 2a - 3 
and $U, (+) = G,(t). 

With an obvious definition of C and V, equation (Al . l )  can be rewritten 

d W ,  a ) l d t  = v(t, (+)G(t, (+) +exp[C(t, (+)IG(t, -(+I. (A1.3) 

C may be complex valued. 
The main result of this appendix is given in the following. 
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Proposition A l . l .  The solution of (A1.3) is given by 

where N I  is the ordinary Poisson process of unit intensity starting at zero at time zero. 

To prove that the previous expression satisfies the differential equations we shall 
use standard techniques of the It6 calculus. The general theory is developed in Gihman 
and Skorohod (1972); however, for the sake of completeness we recall a lemma which 
is of central importance in what follows. 

Lemma. Let q!I and II, be sufficiently smooth functions and N, be the ordinary Poisson 
process of intensity one and starting at zero at time zero; then 

The previous formula has an intuitive content. Consider the obvious formula 

If within the time interval At there is just one jump, the right-hand side is different 
from zero and equal to the second term in (A1.4) (when q!I = O ) .  We are justified in 
considering only one jump since for a Poisson process the probability of n jumps in 
the time interval At is proportional to (At)".  Then up to terms of order (At)* our 
formula is correct. 

Now the proof of proposition (A l .  1) follows through elementary observations. 
( i )  Since the system is linear we can restrict ourselves to initial conditions of the 

form 

&(a)  = Uf, e =o ,  1. 

(ii) One has the following identity: 
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(iii) Direct application of the lemma shows that 

d [ exp( for V(T,  ( - ) N c - N ~ c r )  d~ + lo' C(T,  (-)Nr-Nr+'a) ...>I 

-exp( Io' V ( r ,  (-)Ni-NTcr) dT + cr) dNT) (-)"i] dN,. 

The independence of dN, on what is on its left and E(dN,)  = dt achieve the proof. 
One can guess the formula solving the general case ( p  >2)  and it can be verified 

The solution of the linear system of ordinary differential equations 

3 ( t ,  a )  = c exp[C(t, a, P I M ~ ,  a@@)+ v(t, a)$(t ,  a )  

using the same techniques as before. 

P - 1  

dt p = 1  

with the initial condition 

$( t  = 0 ,  a )  =$(a) 

is given by 

where NI = ZpPL1l P N f  is the sum of p - 1 independent usual Poisson processes and 
the sums a ON,, a ON,ON,  and a ON,ON,@p stand for the same sums modulo p .  

A special case of this formula has been already obtained by Ginibre (1968) in the 
case where the matrix elements of the linear system do not depend on time and the 
matrix is symmetric. 

Appendix 2. A formal derivation of equation (3.2) 

Since the coefficients of the Pauli equation are time independent one can identify this 
equation with a backward 'Kolmogorov equation' (BKE). After a reflection of time, 
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the Pauli equation can be rewritten 

% ( r ,  X, U )  + tA,$(r, x, a )  + iA (x 1 Vx$(r ,  x, a )  -$/A (x)12$(t, x, a )  
at 

+ Vl(x, a ) $ ( t , x ,  a )  + V2(x, a)W, x, -a) = 0, 

Vl(X, a )  = - V(x) + $Hz ( x ) a ,  

V2(x, a )  = tH,  (x) - tiHy ( x ) a .  

We assume that Vz(x ,  a )  is non zero, and define 

Vdx, a )  = exp[C(x, (711. 
Furthermore let 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

which due to (A2.1) satisfies the equation 

- * ( t ,  x, y, z ,  a )  = 0 (A2.6) 

The solution of such an equation can be given in terms of the following processes: 
and has indeed the form of a BKE (Gihman and Skorohod 1972). 

(A2.7) 

(A2.8) 

(A2.9) 

The solution of (A2.6) which takes the value $&, a )  exp(J2z +iI;:=, y i )  at r = T 
is given for c T according to Gihman and Skorohod (1972) by 

W, x, Y, z, a )  

(A2.11) 
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We remark that the derivative with respect to t is minus the derivative with respect 
to T. Then in the previous formula one chooses y = z = 0 and t = 0. This coincides 
with (3.2). 

References 

Carmona R 1978 Commun. Math. Phys. 62 97 
De Angelis G F and Jona-Lasinio G 1982 J. Phys. A: Math. Gen. 15 2053 
Gaveau B and Vauthier J 1981 J. Funct. Anal. 44 388 
Gihman I I and Skorohod A V 1972 Stochastic Differentia[ Equations (Berlin: Springer) 
Ginibre J 1968 Commun. Math. Phys. 10 140 
Kabanov Yu, Liptzer R and Shiryaev A 1978 Necessary and Sufficient Conditions for Absolute Confinuity 

of Measures corresponding to Point (Counting) Processes in Proc. Int. Symp. on Stochastic Differential 
Equations, Kyoto ed K It6 (Tokyo: Kinokumiya) 

Malliavin P 1978 Gt!omifrie Diffirentielle Sfochastique (Montreal: Presses de I’Universitt de Montreal) 
Simon B 1979 Functional Integration and Quantum Physics (New York: Academic) 
Witten E 1982 Supersymmeby and Morse Theory, preprint 


